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Abstract

This investigation considers the mode-conversion process

encountered in the lower-hybrid heating scheme at the edge of the

plasma, where the frequency of the external radiation is compar-

able to the local value of the electron plasma frequency. The

problem is formulated in terms of a modulational representation

of the electric field that permits the description of the full

space-time evolution of the process. The numerical study of the

model equations confirm that a backward wave is excited at the

edge and that it leads to a net energy flow directed toward the

interior of the plasma. For small ext ernal power levels, the

flow is characterized by the propagation of a leading-edge pulse

whose arrival at a given spatial location marks the onset of the

steady-state. At large external power levels, the self-consistent

modification of the density profile by the ponderomotive force is

found to quench the mode-conversion process, thus causing a signifi- 
)

cant reduction in the amount of RF energy that can be coupled from

the external source to the interior of the plasma.
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Abst ract

This investigation considers the mode-conversion process

encountered in the lower-hybri d heating scheme at the edge of the

plasma , where the frequency of the external radiation is compar-

able to the local value of the electron plasma frequency. The

prob lem is formulated in terms of a modulational representation

of the electric field that permits the description of the full

space-time evolution of the process. The numerical study of the

model equations confirm that a backward wave is excited at the

edge and that it leads to a net energy flow directed toward the

interior of the plasma. For small external power levels , the

flow is characterized by the propagation of a leading-edge pulse

whose arrival at a given spatial location marks the onset of the

steady-state. At large external power levels , the self-consistent

modification of the density profile by the ponderomotive force is

foi.md to quench the mode-conversion process , thus causing a signifi-

cant reduction in the amount of RF energy that can be coupled fr om

the external source to the interior of the plasma .

L. ~~~
.=. 
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I. Introduction

The goal of an auxiliary p lasma heating scheme aimed at achieving

thermonuclear temperatures ( > 10 1(eV) consists of delivering a large

amount of external energy to the interior of a pre-existing plasma having

a moderate initial temperature ( < 3  KeV) . The various auxiliary heating

schemes being considered at the present time differ mainly in the form

of the primary energy used , e.g., the neutral-beam heat ing approach uses

the st reamin g or kinetic energy of the inj ected particles , while the RF

heat ing schemes utilize electromagnetic energy directly.

Regardless of the particular heating method considered, in its im-

plementation phase one always encounters the following major physics

questions: 1) How is the external energy transferred to the ions once

it reaches the interior of the plasma? , 2) How is the external energy

transported from the edge of the p lasma to the interior ? , and 3) How

does the external source couple to the surface of the plasma? It should

be noted that the existence of potentially deleterious answers to any of

these questions may render the entire heating scheme inapplicable as far

as the attainment of fusion conditions is concerned, even though the scheme

may be quite meritorious on the grounds of the existence of a well-devel-

oped technology or because of its ease of implementation .

Historically, it has been the case that the interest of the plasma

physics community has been focused mainly on the issues surrounding ques-

tion 1) and only peripherally on those matters pertaining to questions 2)

and 3). However , with the ever increasing need to assess the future poten-

tial of auxiliary heating schemes it becomes important to consider the funda-

mental physics of processes that may be encountered in answering questions
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2) and 3). It is in this general direction that the present investigation

is aimed. Specifically, this study isolates some of the surface-coupli ng

properties of external electromagnetic radiation in the lower-hybrid fre-

quency range .

The particular case which pertains to the present investigation is the

lower-hybrid heating scheme proposed by Stix 1 over a decade ago . A large

fraction of the theoretical effort in this topic has been devoted to elluci-

dating the numerous processes which may occur deep in the interior of the

plasma, where the frequency of the external radiation , u , matches the peak

value of the lower-hybrid frequency w~~ = w
~~
/[l + ~~~~~~~~~~~ in which ~pe

and refer to the electron and ion plasma frequencies , and 
~e represents

the electron gyrofrequency .

Over the past year , it has become increasingly evident that major

difficulti es may be encountered in this heating scheme in the process of

transporting the RF energy from the edge of the plasma to the interior ,

i.e.,  before the condition w = w is ever attained. Numerous theoretical
2-4 5,6

studies of parametric instabilities , of lower-hybrid cone filamentation
7

as well as explicit experimental measurements of filamentation phenomena

and associated plasma heating in small-scale experiments , have contributed

to the genera l realization of this poin t of view . Yet , a more direct and

compelling argtmient has been provided by the results of the large-scale
8

lower-hybrid heating experiments performed in Alcator at MIT , and in the
9

Alt tokamak at Princeton .

Although the details of the outcome of these experiments are diff icul t

to interpret, it is important to recognize that both of these studies are

consistent with the view that the externa l RF energy is eff iciently injected
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f rom the source waveguide into the plasma-filled vacuum vessel , and there-

after it propagates in the vicinity of the plasma edge , with only a rela-

tively small fraction of the injected energy penetrating to the interior.

Therefore , it is of interest to isolate some of the basic processes which

may play a role in the coupling of external RF energy in the lower-hybrid

frequency range at the edge of a plasma.

The present study is concerned explicitly, with the mode-conversion

process which is encountered in the low density region at the edge of the

plasma where the frequency of the incoming radiation is of the order of the

local electron p lasma frequency, i .e., ~ ~pe . To simplify the problem

a slab model is considered in which the density varies in the direction

perpendicular to the external magnetic field. Unlike previous studies of
10,11

the mode-conversion process , which have dealt exclusively with the

steady-state properties , the present formulation uses a modulational repre-

sentation ‘or the electric field which permits the description of the full

space-time evolution of the detailed process.

The numerical study of the relevant model equations of the problem

demonstrat e that in the region where w > a backward wave is excitedpe
and leads to the propagation of RF energy away from the plasma edge toward

the interior. An interesting feature of this transport is the existence of

a propagating leading-edge pulse whose arrival at a given spatial location

marks the onset of the steady-state pattern .

The present formulation also permits the study of more comp licated non-.
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linear processes which may take place at the p lasma edge when large ex-

ternal power levels are applied. In particular , the present study has

considered the effects produced by the profile modification caused by

the ponderomotive force associated with the intense electric fields . It

is found that this effect can alter the mode-conversion process to a large

degree , thus leading to significant reduction in the penetration of the

external RF energy into the plasma.

The manuscript is organized as follows: Sec. II presents the formulation

of the problem , its properties, and associated conservation laws. Sec. III

discusses briefly the boundary conditions and numerical scheme used to study

the model equations . Sec . IV presents the results of the time evolution

of mode-conversion in both the linear and nonlinear regimes. A suimnary of

the results obtained is presented in Sec . V.
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II .  Formulation

To simplify the geometry of the present problem we consider ex-

plicitly a plasma slab whose zero-order density n0(x) increases along

the x-direction , which is taken to be perpendicular to the external

magnetic field as is illustrated in Fig. 1. The z-axis of the carte-

ssian coordinate system points along R~, while the y-axis is perpendicular

to the x— z plane , and constitutes the ignorable coordinate of the problem,

i.e., there are no explicit functional dependences on it. The total

electric field ~ is expressed in the form

= EU c ,t)e~~~~ 
— ut) 

+ c.c. (1)

In Eq. (1) k represents the wavenumber along the z coordinat e and

is assumed to be fixed, physically, by a suitably designed external slow-

wave structure or simulated by a properly-phased waveguide array (grill).

The fundamental role played by such external devices is that they permit

the experimenter to choose th e  proper value of k that optimizes the

penetration of radiation into the plasma. In particular, these devices

permit the generation of radiation such. that k > k0 = u/c, where c is the

speed of light , and thus k0 represents the vacuum wavenumber. As is

well kno n~’
1’0’1~

’ this prerequisite must be met by the external radiation

in order to satisfy the lower—hybrid accessibility criterion.

In the context of the present problem (U is equal or comparable to

the value of the peak lower—hybrid frequency of the plasma; such a value

is , of course , attained deep in its interior . In contrast , the region of

interest to the present calculation is that where w is comparable to or

within an order of magnitude smaller than the local value of the electron

plasma frequency, i.e.,
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~ L&peak 
“ 
~ pi1peak (2)

thus , the region of interest is défined, for a given density profile, by

‘
~~ ~pe~~~ 

.~~ l0ü~ (3)

Maxwell’s equations for the radiation fields rand B are

(4)
4ir . 1 3V x B = —)  + — —

- c - c 3t 
-

which can be combined to yield

4ir a - 1 ~ 2 ~~V x V x C . =~~~~ 7 ~~~~~~~~~~~~
- ---~~

- ~~~~~ (5)

considering Eq. (1) and making use of the modulational approximation

(i .e. ,  neglecting the 32E/3t2 term) reduces Eq. (5) to

V X V  X E  = - ±~~e~~t 
~~- j  - k2E + 2i —2~~~~~E (6)

In the spirit of the modulational representation we take the self-consistent

RF current in the p lasma , j , to be determined by the instantaneous value

of the el ectric field , i.e., we neglect time—hist ory contributions to the

linear dielectrics. Accordingly,

4~r iwt 3 7— j + E ~~~~- ~ . Eat 
- - -



where, ~~is the cold plasma dielectric tensor having the form

C C 0xx xy
c = c c 0 (8)yx y y .

0 C zz

The ordering of frequencies in the lower-hybrid scheme is such that

~ << 

~e’ 
thus the components of ‘~~

‘

~ are

2 2
(U ( U .

C c ~~~~~ — —
~~
-

~~xx 
~7 ~e

C — c  ~~i (9)xy yx

~ 
12

C = 1 —
zz (U

Using Eq. (7) in Eq. C6) yields

! 1... E + ’
~~ E = ~~~~— . 7 x 7 X E  (10)

Writing out explicity the V X V operator in Eq. (10) produces the following

coupled partial differential equations for the components of the electric

field

~~~~~ E~ + 
~~~~~ ~~

-
~~~~~

- E~ + Ic>7 
— (4_)21 E~ = - C xy Ex (11)

~ 3~ k a
~~~~~~ 

E + 
~~~~ E~ + c E  = i r—~

- ~~— E (12)
0 0

+ - E = ~ ~~ T E + cxyEx (13)
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One envisions the external radiation arriving at the edge of the

plasma slab with finite values of E
~ 

and E1, and with E = 0. Although

not present in the incident radiation , an E~ component develops inside

the plasma due to the self-consistent £ x currents. However, the

generation of this component is rather weak in the region of interest

here because, as is seen from Eqs. (9) and (11), the coupling is of order

“~ e 
(X)/(U

~~e ~ 
<< 1. Accordingly, the equations governing the

space-time evolution of the coupling at the edge of the plasma are of the

form

i 3 E  + 3 2E +~~~ E = iA3 E (14)
T I  ~~ Z Z Z Z

i 3 £ + cE = iA3 B (15)
T X  X

where, the scaled variables r = ~t/2 , and ~ = k0x have been introduced.

Furthermore, the simplifying notation 3/3t = 3~ , 3/3~ = a~~, A = k/k0, and

= — A2, is used.xx

To gain physical insight into the background of Eqs (14) and (15)

it is useful to consider first the steady-state situation where 3 ~ 0.

In this special case Eq. (15) yields

E ~~~~ E (16)
X C ~~~Z

which can be inserted into Eq. (14) to obtain

+ A 2 c . (~•) 3~ E + c1~ 
E = 0 ( 17)

____________ —---~-.——~~~~~~~ — ,
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Eq. (17) has the general form of a damped harmonic oscillator equation

with variable coefficients. The contribution from the term proportional

to 3~E1 gives rise to a damping factor which is important only for ex-

tremely sharp gradients in the dielectrics. The coefficients multiplying

the term proportional to E~ are of crucial importance to the behavior of

the system because their combined sign determines whether or not the

radiation can penetrate into the plasma. In those reg ions of extremely

low density where wpe (x) < tu, it follows that < 0. However, as one

moves across the 
~pe~~ 

= (U point, C
2~ 

= 0; finally, as one proceeds to

the interior of the plasma where 
~pe~~ 

> W~ C~~ > 0. Accordingly, the

determining factor for the radiation to propagate beyond the w = upe(x)

point is that C/c
u 

< 0. Since in this reg ion Cxx 1 this implies that

c < 0, or

A 2 = (~—)~ > 1 (18)

If this condition is satisfied then the external radiation mode—converts

into an internal plasma oscillation which proceeds to propagat e to the

interior. However , the mode-converted oscillation can still be reflected

at the point where C = 0. Hence, if the mode—converted wave is ever to

reach the lower-hybrid resonance this implies that

A 2 = (f.)2 > 1 ‘4. (~~~~~2 (19)
o e

for all the density values up to the resonance layer. Eq. (19) is what

one refers to as the accessibility criterion , which for the typical 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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parameters of relevance to thermonuclear fusion implies that (k/k )2 ~ 2,

thus stressing the importance of using a carefully designed wave-launching

structure.

For completeness, the solution of Eq. (17) illustrating the steady-

state mode-conversion pattern for the simple case of a linear density

gradient is given in Appendix A.

Having obtained an understanding of the steady—state response of the

system one can return to the full space-time description provided by

• Eqs. (14) and (15). For the case A = 0, it is clear that these equations

decouple into two independent processes . Eq. (15) describes the behavior

of local (i.e., non—propagating) electric field oscillations in the direction

perpendicular to B0 . These local oscillations are not short circuited in

either w < °~pe~~~ 
or (A) > Wpe(X)• Eq. (14) describes the propagation of

electric field oscillations parallel to B0. These oscillations propagate

• up to the ~ = ~pe~~~ ~oint and are reflected back to the outside of the

plasma. However, for A > 1 these two independent oscillations couple to

give rise to a net propagation of energy beyond the ~ = ~pe~~~ 
point.

The crucial aspect of the propagation consists of the excitation of a

local ized oscillation in E
~ 

by the gradient of E ,. Once this local

oscillator is excited at a particular point in space, it permits the pro-

pagation of subsequent energy pulses. The resulting physical picture is

that of a bootstrap mechanism whereby the Poynting vector of the incident

radiation , which is initially aligned with B
~
, is progressively rotated

through a finite angle in the direction perpendicular to B~.

The relation between the time evolution of the RF energy content of

the system and the Poynting vector can be found from Eqs. (14) and (15).

Multiplying Eq. (14) by Ez*I Eq. (15) and Ex
* and subtracting the complex

conjugate of the resulting expression yields
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~ 31[IE~ I~ 
+ IE 1~

2] + (E3~ b — c.c.)

+ 2i [Im(c 1~) LE Z
I2 + Im( cxx) IE~

I2] (20)

= 2iA Re[3 (E*E ) ]

Next, integrate both sides of Eq.(20) from an initial point 
~~~~
, located

outside the plasma , up to a point 
~~~~
, deep inside the plasma . At

E
z is assumed to be fixed by the wave-launching structure, while at

= B = 0 because the RF energy has not had enough time to propagate to
this point. Performing the integration yields an expression of the form

i —2. fr U + i 2 k -~IiU = I 1 + J 2 (21)

where ,

= [IE~~
2 + 1E 12 ] (22)

represents the instantaneous electric field energy per unit area stored in

the region bounded by the points x0 and Xf (corresponding to and E
f).

In Eq. (21)

rx fj dx [Im(c ) !E 12 + Im( c ) 1E J2 ]  (2 3)
x

- 
0

(U U



represents, physically, the average rate of energy absorption or heating which

takes place between x and X
f
. The remaining terms in Eq.(21) are

- 

~~ 

dx (E* ~~E — C.C.) (24)

which upon integration by parts yields

~
— (E~* 3

~ 
E~ — C.C.)

- ~~ Itn(E~~ 3x E )  (25)

similarly,

r
Xf

I iA I dx (E * a E + E * 3 E + c.c.) (26)2 j  z x x  x x z
x
0

hence,

I —2iX Re(E E *) . (27)2 x z  x
0

Combining Eqs. (21) through (26) one obtains

= — —
~~~~~ 

Im(E~* a
~ ~~~~ — 4~— A Re(E E*) . (28)

The terms on the left—hand side of Eq. (28) can be readily interpreted ; they

simply represent the rate of change of the total electric field energy per

unit area contained in the system. The meaning of the right—hand side of

Eq.(2 8) is made clear by evaluating the Poynting vector S at x0

4 ’ r r S = C R e (E X B*) (29 )

but ,

B V x E/(ik ) (30)

hence 

~~~~~ • • • - •. --.~~~~~~~~~~~~~~~~~~~~~~~ . ‘,~~ .-- ‘. •  ~~~~~~~~~~~~~~~ • . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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B 
~

( i1c.E
~ 

— 3 E ~ )/ ( ik ) 
. 

- (31)

where ~ is the unit vector in the y direction. Accordingly,

4-irS -~ -- R e [ ( i 3 E *  — 

~~~
*)(B

~~ 
— E 2) ] (32)

thus ,

4-IrS•~ ~
— [Re(iE~9 E ~*) — k Re(E E *) ) (33)

but,

Re(i E 3E * ) =_ I m ( E3 E * )  (34)z x z  z x z

hence,

4irS = — -
~— Im (E3E*) — cx Re(E E *) (35)

which exactly reproduces the right—hand side of Eq. (28) when evaluated at

x x .  The interpretation of Eq.  (28)  is now complete, it reads simply

U = 4-ir(S ) (36)

thus stating that the increase in the electric field energy content of the

plasma arises due to the development of a non—zero S~ just outside the plasma

edge.

To understand the nature of the external radiation in this problem it

is useful to consider the system in the absence of plasma . In this case ,

c — s — 1, and c 1 — A2 <0. Hence, Eq. (17) takes the formzz xx

3~
2
E — (A 2_l)E

~ 
— 0 (37)

whose solution is

E E exp(— [A
2
—1]1”2 k x )  (38)

thus indicating that the external radiation is evanescent in the direction in 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~-.
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which the plasma density increases (i.e., when the plasma is present). In

Eq. (38) E is a real coefficient which represents the peak field produced by

the wave—launching structure in vacuum .

The energy flow associated with the external radiation is found by evalu-

ating the Poynting vector from Eq. (32) , in which

E — 
iA 3 E  (39)

~ 1—A

hence,

r i 3 E
4-irS — Re 

[ 
~~~ (~ E — ~E 

)
~j (40)

— 
0 1—A x

and since E
~ 

is purely imaginary and given by

E — 11~~~E (41)x 
~~~~~

_ 
, x

it follows that

S = 0x

= ~A E 
2 exp(_2(A 2_1)1/’2 k x] . (42)

A — i
0

Equation (42) illustrates that the external radiation transports energy only in

the direction of and that the magnitude of this flow decreases exponentially

in the direction of increasing plasma density. Accordingly, the picture of

the system at a time shortl,,r before mode—conversion occurs is as illustrated

qualitatively in Fig. 2.

The nature of the oscillations excited in the mode—conversion process can

be better understood by examining the dependence of the generated S on the

phase of the mode—converted waves. This relationship is simpler to examine

for the steady—state case in which the electric field components have the

form

_ _ _ _  --.. -- ~~~~~~~~~~~~~~ •, • -~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~~~~~~~~~~~~~~~



______________ -• - •  - •. , .—•V’~~

- 17 -

E (x) — c&(x) exp(ia(x)]

E
x

(X) 8(x) exp [ib(x) ] • (43)

where (cx, B) and (a, b) are real functions describing the amplitude and phase

of the (E
s, E) components. Using Eq. (31) leads to

4-it S — -i-- Re[i(3 cx — ict3 a) e is 
— k$ e~~~]x k x x

0

4’ir S — f- [ct29 a — kaB cos(a—b)] . (44)

Again, in the region of interest C 1, Cxx 1—A 2 hence

ix 1 3E — — — E  (45)x 2 k 3x z
1—A 0

implying that

B — 

[A~~ 1] {k] [ (cc3
~

a) 2 + (3
x
cL)
2
]
~
’2 (46)

and b—a = ~~ , with

-3 cx
— tan 1 

{cx~
c
a}

thus Eq. (44) takes the form

4ir S — { 2~ — 

A2-l 
cosc~ (( cc3 a) 2 + (3 cx) 2 ]~~

’2 } (48)

using Eq. (47) leads to

c 2 A2
41T S — — c s 3 a  1 —x Ic x 2o A — i

or (49)

C 2 x4ir S — — — c xx k 2o A — l

Since A2 > 1 to satisfy the accessibility cri terion , Eq. (49) in conjunction

with Eq. (36) implies that in order to couple RF energy to the interior of

the plasma the oscillations exci ted by the mode-conversion process must be

strictly of the backward type, i.e.,

— - : . J2 ~~~~~~ — —. —  -
- -
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a a < o  .. (50)

In principle, Eqs. (14) and (15) can be transformed into an integral

representation by using a double Laplace transform in T and E. However, the

resul t ing expressions are not of much use when actually trying to display the

space—time evolution of the electric field. In particular, this task is rather

arduous for complicated density profiles and is only limited to linear problems.

A more direct approach is to solve Eqs. (14) and (15) by using difference

schemes in a digital computer. In this manner one can handle arbitrary density

profiles, complicated boundary conditions, and in addition it permits the

investigation of important nonlinear effects. The implementation of such a

numerical study for Eqs. (14) and (15) is discussed briefly in Sec. III. For

completeness, the integral representation of Eqs. (14) and (15) is given in

appendix B for the simple case of a constant density profile.

The space—time formulation provided by Eqs. (14) and (15) permit the

description of numerous linear and nonlinear processes which arise due to the

explicit dependences of C and on the plasma parameters. Some of these

parameters may contain interesting zero—order fluctuations of their own, or

can be altered in a nonlinear manner when the applied radiation is rather

intense. An interesting problem associated with natural fluctuations is the

purely linear backacattering of the evanescent radiation by surface ripples.

This is a process which may inhibit the rotation of S by a significant angle,

however, its investigation is outside the scope of the present study.

Out of the many nonlinear processes that may arise at the edge of the

plasma when large power levels are applied in a heating experiment, in the

present study we have chosen to isolate the specific effects associated with

the modification of the density profile by the ponderomotive force. This is

an effect  whose consequences may be of importance because it alters directly

the process of mode—conversion by shifting the point where w W
pe~~~ 

and

simultaneously changes the gradient scale length. A3 it has been seen earlier 



__. _ ,. - - _ • ._ ~~~~~~~~~~~~~ — ••_•_ •• .___•_ •• •_  .— —.— __
~•_ • _____ ___._._ ~~~~~ •~- . • _._.____ _ ._ _ _ _ .  

- 19 -

in this section, the mode—conversion process is responsible for the generation

of a non—zero S
x~ 

thus the profile modification can play an inhibiting role in

the coupling of RI energy at large power levels. It is also of general interest

to compare the effects of the non] inear density changes in the present magnetized

plasma problem with those previously observed experimentally12 and theoretically13

in the interaction of intense evanescent radiation in an unmagnetized plasma.

For the sake of simplicity , in the present study we introduce the nonlinear

profile modification explicitly through the expression for the plasma density, i.e.,

by using 2
2 E IE J 1

n(x, IEI ) — n
~
(x) exP[_ 4 rtn (x)Tj (51)

in which a represents the spatially dependent zero—order density (i.e., unmodified),

I is the plasma temperature, and tE l
2 
is to be determined self—consistently from

Eqs. (14) and (15). The nonlinear density shown in Eq. (51) appears in Eqs. (14)

and (15) through th~ expression 
~pe

2 
= 4rre2n(x, 1E 1 2)fm contained in the dielectrics.

Clearly, Eq. (51) is an oversimplification of the actual behavior of the

plasma density which is subjected to the intense power levels expected in a fusion—

grade experiment. Immediately, in a problem of this nature one can think of includ-

ing a variety of effects, such as the generation of ion acoustic waves, shocks,

plasma heating, etc. However, before proceeding to include such complications one

must assess what results arise from the simple model provided by Eq. (51). Such

is the philosophy behind the nonlinear studies presented in Sec. IV.
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III. NUMERICAL PROCEDURE

In implementing the numerical study of the mode—conversion process one

proceeds first  to discretize the time variable in finite increments &r , and to

time—average both Eqs . (14) and (15) to obtain

-
~~~~~ (F—i) + -

~~ a~
2 (F+?) + —~f 

(F+~) !~ a~ (G.I4) (52)

(C~4) + (G-14) — .
~4 a~(F+~) (53)

where F E ( ~~, t ) ,  G 
~~~~ 

T) represent the present values of the electric

field components, and 7, ~ refer to their value at the previous time step, e.g.,

— A(~ , T—~ T).  Eqs. (52) and (53) provide a coupling between F and G which

must be solved implicitly at every time step.

Eliminating C from Eq. (53) gives

— (C/2)] + i -
~~~ a (F+7)

G —  . 2 
~ (54)i/&t + C/2

which can be inserted in Eq. (52) to yield

2 
~ + 

[ (j I M)  + (c/2 ) ] 
~~ ‘F a 2 2A 

_____

((j iM)  + (1/2)] M C
j  

— — M .i~ +
~T 2

+ 
[(i/M) + (c/2)] 2i (55)[( i/M) + (1/2 ) ] t~T

in which one makes explicit use of the simplifying properties of the edge region,

namely £ 1. Eq. (55) provides a second order ordinary differential equation

f or the present value of E
~ . This equation can be solved implicitly if one

knows the previous value of E
~
, the spatial dependence of the dielectric C ,

and the appropriate boundary conditions .

To solve Eq. (55) one goes through an averaging and discretization in ~~,

similar to that used in generating Eqs. (52) and (53). The resulting second

difference equation in ~ is solved implicitly by using the well—known
14 

t n —

diagonal algorithm. After having calculated F by this method one returns to

Eq. (54) to update G, thus completing one full time step in the problem.
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The boundary conditions used in solving the present problem are the

following : 1) E
~ 

is held fixed at the value E0 at a position well outside

the plasma, and 2) E
~ 

= 0 at the boundary located deep inside the plasma .

The exact location of the point outside the plasma has been varied for a

given density profile to verify that the results are independent of its

particular numerical value. Similar sensitivity studies have been made

concerning the incremental space-time steps ~~ and i~-r . To insure that no

reflection problems develop with the E1 = 0 boundary at late times in the

evolution, a strong edge absorption is included through c.,
~

; this boundary

absorption does not give rise to observable effects in the region of interest

here.

The choice of boundary condition outside the plasma allows maximum

freedom to the mode-conversion process, since the value of a
~
E
~ 

is lef t

unspecified , as should be the case. This derivative, as well as the value

of E at the outside boundary is allowed to evolve self-consistently in time ,

so their combination gives rise to the gradual development of a finite S~ .

The initialization of the system is accomplished by assigning the steady-

state, pure vacuum solution to the quantities E
~ 

an-~f~ E~
. i.e., they are

given the values predicted by Eqs. (38) and (39). This procedure can be

interpreted physically as a statement that prior to the development of the

mode-conversion process the plasma is virtually insensitive to the RF fields .

However, a few cycles after turning-on the oscillator the plasma begins to

respond , and it is this time that we arbitrarily denote as t = 0. Of course,

one can also consider the slow turn-on problem in which one legislates E0 to

be a slowly increasing function of time, however no additional physical

insight is gained by this procedure which introduces further arbitrary choices

of parameters.

Various shapes of the zero-order density profile n0(x) hav e been

investigated in which in general the density is taken to increase mono~~fl ica11y 

-~~~~~~.
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as a function of x. Although for each individual profile the spatial scale

of the fields developed is observed to vary in the expected manner , the

general features presented in Sec. IV are insensitive to the specific choice

of profile.

Finally, the nonlinear density profile given by Eq. (51) is introduced

into the numerical scheme, at a given time step, by averaging the quantity

I El 2 over the two previous time steps. In this manner a certain amount of

numerical inertia is retained in the method .

We proceed next to discuss the results obtained by implementing this

numerical scheme with the help of the mathematical on-line system at the

University of California, Los Angeles.
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IV. RESULTS

A. Linear Behavior

In the investigation of Eqs. (14) and- (15) a particular zero-order density

profile must be chosen. In general , we characterize the prof iles used by means

of a single scale-length L, i.e., no 
= n0 (x/L) . Thus , it proves convenient

for display as well as for physical reasons to scale the spatial variable in

terms of this natural length of the problem . This choice implies that in the

linear regime the systen’ depends explicitly on two lumped parameters, namely

k L  and ). k/k . The results to be presented correspond to the particular
2

choice A = 2, which is representative of the expected experimental values .

In addition , the parameter regime of interest to the physics of the plasma

edge corresponds to k
0L 

- 1.

To give a feeling for the numbers that these choices may imply for actual

applications, it should be noted that for incident radiation having a frequency

u w/2ir - 3 GHZ, which may be considered typical of a fusion-grade experiment,

the length scale corresponds to L - 1 cm. However, for the purposes of the

present study no specif ic values of w and L need to be assigned .

A characteristic density profile used in the present studies is indicated

by the solid curv e shown in Fi g. 3. It corresponds to the choice

n (x)
_____ = [1 + tanh (-

~ 
- 4)] (x/2L) (56)

p

where , ~~ represents the densi ty for which 
~pe~~~ 

= w, and whose numerical

value does not need to be specified. The dashed curve in Fig. 3 is the

dielectric c~~; its zero-crossing separates the evanescent and propagating

regions. The dotted curve in Fig. 3 is the quantity El2 prior to the

development of the mode-conversion process; its strong evanescence into the

plasma is apparent.
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It should be emphasized that the results to be presented in the remainder

of this subsection are strictly linear, i.e., the nonl inear density profi le  given

by Eq. (51) is replaced by n0, 
the zero-order unperturbed profile.

The space-time evolution of the process of linear mode-conversion is

illustrated in Fig. 4, in which we plot the spatial dependence of the real and

imaginary parts of E , for various different times. These results are obtained

for the profile shown in Fig. 3, and the values k0L = 1, (k/k0)
2 

= 2. It should

be noted that there is a change in the spatial grid between the displays of

Fi gs. 3 and 4. In Fig. 4(a) ~,t = 1.0 , hence the early pattern observed is

essentially the evanescent vacuum solution except for the appearance of the

small imaginary part near the edge. By ut = 5.0 it is seen in Fig. 4(b) that the

small imaginary part of Fig. 4(a) has grown in amplitude and in doing so it

becomes spatially out of phase with the real part. The combined real and

imaginary parts have developed by this time almost a full wavelength which

extends into the plasma beyond the point where = 0. In Fig. 4(c) one clearly

observes the development in the interior of the p lasma of a wave which is

continuously linked to the evanescent external radiation in the region x/L - 3

(i.e., near ~ ., = 0). Fig . 4(d) at ut = 20.0 indicates the existence of a
z’-

well-defined propagating wavepacket having a signif icant ampli tude and whose

role is to transport the RF energy to the interior of the plasma .

The transport of RF energy associated with the sequence of events illus-

trated in Fig. 4 can be seen in Fig. 5. In this figure we reproduce the

information of Fig. 3, but include in it the spatial dependence of the mode-

converted quantity tE~
I2for ut = 20.0 (represented by the dotted curve). For

reference it should be mentioned that in the absence of mode-conversion the

quantity IE Z I2 would be evanescent beyond the = 0 point .

Al though the sequence of events depicted in Fig. 4 clearly indicate that

RF energy is being carried away from the edge toward the interior of the plasma ,

it is not clear from this presentation if the excited mode corresponds to a

L ~~~~~~~~~~~~~~~~~~~~~~~~~~ •- .~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - ~~~~~~~~~~~~~ -~~ ~~~~~ •~~~~~~~ • . •
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forward or to a backward wave. To check on this feature one needs to plot a

phasor diagram akin to that commonly used in sampling-time interferometnic

measurements of plasma waves. Such a plot is given in Fig. 6 for the E
~

component at the fixed time ut = 5.0, and obtained for a profile which differs

slightly from that shown in Fig. 3. In Fig. 6 the direction of the arrows

indicate the direction of increasing density, or equivalently, to penetrating

deeper into the plasma. The fact that in Fig. 6 the phasor rotates in the

clockwise direction (i.e., in the direction of decreasing phase angle)

identifies the type of modes shown in Fig. 4 as being backward waves , as is

expected from the analysis leading to Eq. (50). The corresponding behavior

for the E
~ 

component is illustrated in Fig. 7.

It has been demonstrated in Figs. 4 through 7 that the process of linear

mode-conversion indeed takes place as expected and that it generates a backward

wavepacket that proceeds to fill the interior of the plasma with RF energy.

Having observed the evolution of this process it is of interest to inquire

how the steady-state is attained for a given spatial point in the region where

> 0. The answer to this question is provided by the sequence of curves

shown in Fig. 8. In this figure we plot the total electric field energy density

I El2 as a function of spatial. location with time as the parameter being varied

over the interval 0.5 ~ Vt ~ 10.0. Again, this result is obtained for a prof ile

slightly different from that of Fig. 3, and with k
0
L = 1, (k/k0)

2 = 2. The

salient feature uncovered by Fig. 8 is that the RF energy propagates away from

the ~~ = 0 region via a leading-edge pulse which grows in amp litude spatial ly

as it penetrates deeper into the plasma. At a fixed spatial location , however,

nothing occurs in time until the foot of the pulse arrives. After its arrival

at a given point the local energy density grows in time until the peak of the

leading-edge pulse passes by. Shortly after the passage of the propagating
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pulse, the amplitude of the local energy density stops growing and attains its

steady-state value. The attainment of the steady-state is reflected in Fi g.  8

by the accurate overlapping of all curves in the trailing edge of the propa-

gating pulse. 
-

B. Nonlinear Behavior

We proceed next to describe the results obtained when the nonlinear density

modification given by Eq. (51) is included in the space-time evolution of the

mode-conversion process. A characteristic profile distortion produced at the

edge of the plasma is shown in Fig. 9. In this figure the dashed curve corres-

ponds to the zero-order unperturbed density, while the continuous curve is the

nonlinearly modified profile at ut = 10.0, for k0L = 1, and (k/k0)
2 = 2.

Three qualitatively different types of distortions can be identified in

Fig. 9, namely: 1) the recession of the irnint (Upe(x) = ~~ away from the wave-

launching structure; 2) the local steepening of the profile at the newly created

~pe~~ 
= ~ point; and 3) the generation of density pockets or striations beyond

this point. All of these distortions work in the direction of decreasing the

effectiveness of the mode conversion process, hence the nonlinearity in this

problem is self-limiting in the sense that the distortion leads to a reduction

of IE I2 inside the plasma instead of enhancing it. This behavior is quite the

opposite of that observed in the mode-conversion problem in an uninagnetized

plasma . As is well known ,12’’3 in the unmagnetized case the generation of

density cavities localizes the electric field and leads to the formation of

hi gh intensity spikes.

The quenching effect produced on the mode-converted wave by the modifica-

tion of the profile is illustrated in Fig. 10 for a study made with a zero-

order density of the form n0/n~ = x/L , and with k0L = 1, (k/k 0)
2 = 2.  F ig.  10

is a phasor plot of E (of the type discussed earlier in connection wi th Fig. ~)

in which we present, on the same scale , the patterns obtained for a strictly

_ _..

~

.__ ._ ~~~~~~. _~~~~~~~~~~~~~~~ . 



linear case , Fig. 10(a) , and for a strongly nonlinear run, Fig . 10(b). The

nonlinear result shown is obtained with an initial external excitation level

(i.e., E0 in Eq. (38) that produces an initial value of 1E 12 / (4 Tm n
0

T) = 7 at the

point where 
~pe~~ 

= (U.

It is clearly seen in Fig . 10 that the nonlinearity reduces the amplitude of

the mode converted wave, thus producing a significant quenching in the amount

of RF energy that penetrates to the interior of the plasma .

The salient features observed in Fig. 10(b) are: 1) the increased

evanescence (straight-line pattern) due to the recession of the ~ 
~pe~~~ 

point

to the interior; 2) the appearance of an abrupt phase change associated with the

increased steepness of the profile (manifested through the rapid transition from

straight-line to a curve) ; and 3) an overall retardation in the evolution of the

mode-converted wave relative to the linear case. A similar quenching occurs

also in the E~ component , as is illustrated in Fig . 11 for a case k0L = 2 ,

(k/k)2 = 2, and in which the chosen E0 yields )E V/ (4 7r n0T) = 0.5 at the 
~pe ~~~~~~~

initially.

A convenient method of assessing the overall effect of the nonlinearity

consists of evaluating the instantaneous RF energy content of the plasma slab

considered , i.e., by calculating the normalized quantity
x2

dxl E l 2

u(t) E U(t) 
= 

X 1 
- 

(57)

where, x1 and x~ refer to the boundaries of the slab. In Eq. (57) the division

by E0
2 removes the trivial dependence on the external driver amplitude , there-

fore any changes obtained in u(t) by varying E0 are due to explicit nonlinear

changes in the profile. Such a dependence is illustrated in Fig. 12 for an

initial profile no/np = x/L , k0L = 1, and (k/k 0) 2 2. The top curve corresponds to

a strictly linear case (i.e., the nonlinearity is shut-off) , while the other cur’.~’s

L. -~~~~~~~~~~ - - -~~~~~~~~~~~~~~~~ -- - -- —- . ~~. -.-- .--—.
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correspond to initial values of IEl2/~~ rn0T at the 
~pe point of 0.4 , 1.6 , and

3.6 respectively. . 
-

It is evident from Fig. 12 that as one increases the external power in the

wave-launching structure, the relative amount of RF energy which actually

penetrates into the plasma decreases steadily. This result can be interpreted

in the practical sense as saying that the RF-plasma coupling at the surface is

a decreasing function of the applied power. Physically, of course, this means

that the nonlinear quenching of the mode-conversion process decreases the angle

through which the Poynting vector can be rotated.

From the results of Fig. 12 one can extract the rate at which the plasma

slab is filled wi th RF energy, i.e., by calculating the quantity

V d  u(tI (58)c d t  c

in which u(t) is defined by Eq. (57) and the speed of light, c, proves to be a

convenient scaling factor since the quantity V denotes an effective speed of -

energy propagation into the plasma. Clearly, the quantity V/c can also be

interpreted as the scaled Poynting vector perpendicular to

The amplitude dependence of V/c is illustrated in Fig. 13 for the results

previously shown in Fig. 12. The accentuated squares in Fig. 13 denote the

numerical results, and the continuous curve is an excellent eyeball-fit given

by the expression

(0.11) exp [-(1.3) /~j (59)

where ~ = 1E 1 2 /(4irn T) at the (Upe(X) = (U point prior to mode-conversion .

It is of interest to inquire what effect the nonlinearity has on the

behavior of the propagating leading-edge pulse , observed in the linear regime

and whose evolution is shown in Fig. 8. A character istic nonlinear response

is exhibited in Fig. 14, in which we present the spatial dependence of El 2 and

n for different times in the interval 5.0 < v t  < 10.0, for the case k0L = 1 ,

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -- - . - - -~~~.-.~~~-~~~~~~~~~~- _ _ _ _
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(k/k)2 = 2, and for the initial profile indicated by the dashed curve.

It is seen in Fig. 14 that the leading-edge pulse, characteristic of the

linear reg ime ,breaks up into an isolated peak which proceeds to propagate into

the plasma. The isolated peak observed in Fig. 14(c) is reminescent of a

Langmuir-wave soliton and its associated density cavity. However, the reason

for the localization of the pulse in Fig . 14(c) is entirely different from the

Langmuir-wave case. In the Langmuir-wave soliton the localization is associated

with the trapping of the radiation in a density cavity, while in here no trapping

phenomena occurs. In here, the isolated pulse arises because its leading edge

modifies the profile thus reducing the efficiency of mode-conversion for pulses

that trail in time. In other words, the leading edge samples the higher

efficiency zero-order profile, while the trailing edge samples the modified

profile which has lower efficiency for mode conversion.

The nonlinearly generated RF pulses can become quite dramatic in their

appearance for shallow density profiles, i.e., when (Upe (X) does not become too

large compared to 
~~~
. An example of the sharp pulses that can appear in these

cases is shown in Fig. 15, which has been obtained with n/n = 2 [1+tanh(~.-4)J

for k0L = l , (k/k 0)2  = 2, and E12/(4,rn0T) = 6.0 at the ~ = “~pe 
point , initially.

The time of observation in Fig. 15 corresponds to ut = 13.0.

It is clear from the nonlinear physics that underlies the generation of

the pulses exemplified in Figs. 14 and 15, that multiple peaks or pulse-trains

should appear in the long time evolution of the system . The reason is simply

that the nonlinearity is self-limiting , hence af ter the passage of a l arge

amplitude peak the system returns to its linear behavior which proceeds to

generate another linear leading-edge pulse , and thus the cycle repeats. The

generation of multiple-peak pulses can also be interpreted by saying that the

x component of the Poynting vector, S~ , is constantly oscillating between its
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l inear and nonlinear values , thus leading to an intermittent flow of RF energy

into the plasma. 
-

The existence of these multiple-peak pulses or pulse trains is indicated in

Fig. 16, in which we display the spatial dependence of IEX I 2  for various times

in the interval 10.0 < ut < 14.0 and obtained for a case n0/n~ = x/L , k0L = 1,

• (k/k0)
2 = 2, and lEl2/C4~n0T) = 3.0 at w a Wpe(X)s initially . In Fig. 16(a) one

• observes a dominant single peak located near the left boundary and followed by

two smal l pulses. Fig. 16 (b) shows that the pattern of Fig. 16(a) propagates

into the plasma , with the trailing pulses becoming more visible. Finally, in

Fig. 16(c) one observes a full y developed multiple-peak pulse train that

transports the RF energy to the interior of the plasma.

I
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V. SUMMARY

In the present investigation the use of a modulational representation for

the electric field has permitted the ~ul1 description, in the linear as well as

in the nonlinear regime, of the process of mode-conversion encountered at the

edge of the plasma in the lower-hybrid heating scheme.

It has been found that the salient feature of the mode-conversion process

consists of the gradual excitation of a backward wave which causes a rotation of

the Poynting vector of the external evanescent radiation in the direction of the

density gradient, thus allowing the RF energy to penetrate into the plasma.

The transient transport of R.F energy away from the plasma edge toward the

interior has been found to be accomplished by the propagation of a leading-edge

pulse whose arrival at a given spatial location denotes the onset of the steady-

State.

It has been found that the nonlinear profile modification produced by a

simplistic mode of the ponderomotive force can cause a significant quenching of

the mode-conversion process, thus reducing the amount of RF energy that can be

coupled to the interior of the plasma at large power levels . These results thus

warrant future studies in which more complicated and realistic models of the

profile modification are used.

I n the strong ly nonlinear regime the present study has uncovered new and

interesting multiple-peak pulse trains that can be quite striking in shallow

density profiles. The consequence of the existence of these nonlinear pulses

is that the flow of RF energy to the interior of the plasma is intermittent at

large power levels.

_ _ _ _ _ _ _ _ _ _ _ _ __ _ _  _ -~~ - - .~~~.--~~~~~~~~~~~ - .~~~~~
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APPENDIX A

Consider the special case in which 
e~~~~~

2 
1 + xIL , and where x > 0

denotes the interior of the plasma. 
-
. Accordingly,

d
(l)

l [ [J
2 J 1  (A-i)

and Eq. (17) becomes

— 

~ 
[ {‘

~
_} — 

~
] ~~~~~~ E + 

~~~
— 

~~~~~ 
— 0 . (A—2)

Defin ing ,

E
~
(
~
) - f(~) ex~

[J L 
~~(~~

t)
~ (A-3)

with °

(A-A)

yields,

2 1

-
~~

—
~~~~~~f +I  

ZZ _ g 2
1 f = o  . (A—5)

d~ L~~~°~ I

In the region of interest c 1 and C l—X
2
, thus

~ + [ ~~~~ ~ 
— g21 f a 0 . (A—6)

Def ining ~ [k
0
LI (X

2
—1))~~

3
~ produces

2
f + (n—fl )f — 0 (A—7)

d~
with no — g2 [k0LI (X

2—1)]2”3 . The general solution of (A—7) has the form

f — yA~(n—n ) + 6B~ (n— n 0) (A-8)

where i and S are constants to be determined , and A1, B . refer to the Airy

functions defined in Ref. (15). Requiring that as n -
~ ~ (i.e., x 

-
~ 

c~~)  the

solution should describe the transport of energy into the plasma implies S iy .
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Accordingly, the steady—state linear mode—conversion has the solution

E (x) - y [A ~ [
~ 

- + iB~[~~ 
- n ) j  eXP {A

2[[~~
] 

- 

~ + ~J } (A-9)

where k — (X 2—l)~~
3 (k L) 2”3, and the remaining constant y is determined by

the amplitude of the external radiation.
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APPENDIX B

Defining A = E
~
, B = E , Eqs. (14) and (15) become

i A + a 2 A + c A ix3~B

B + c B = iXa,~A . (B—i)

Introducing the Laplace transform operator in time

~~ 
=~~~(s;t) { } - J d~ e

ST ( } (B-2)

and ~
“
3A 

a A , .Z” B = ~~ , yields

a 2 
~ + ~~ J(c +is)A = i{C~~~~~]A(~~

taO) — 
~~~ 

3~B(~ ,r—O) (B— 3)

Further introduction of a Laplace transformation in space, in the manner

shown in (B—2), i.e.,
~~
”
k 

— ~~ (k;~) and ~
“
k
X A  A transforms (B—3) to the

form

[k2+K2(s)]A — 1k A] (~=O,s) + kA(~=O ,s) + i{c ]A(k~T=O) — 
C 

~~~~ k,T—0)
xx xx

(B—A)

where , 1(2(9) — (c+is)(c
~ 
+is)/(c +is) and it is explicitly assumed that the

dielectrics are spatially independent. If a spatial dependence were allowed ,

then (B—4) would become an integral equation involving appropriate convolutions

of the dielectrics and fields.

Using the pure vacuum radiation solutions to evaluate A(~ ,T0) and

B(F ,t—O) through

1/2A a exp [
~
(Ic/C xx I) ~

ixB — —  A ( 8—5 )
( ( c l  l C~ l) ’

where a denotes the peak field amplitude produced by the wave—launching

~

•

~

_ -~~- ---
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structure, yields

st kx
= ~ 

k2 + :2(S) ~ 1k iJ(~~O~s) + kA(~~O,s)
r 2a I A

+ 
1/2 

(c+is) — 1/2 }

(E +iS)(k + [kk xx l ] ) L [J E t J E JI

(B.6)

where refers to the appropriate Laplace inversion contours.

Equation (B—6) gives, in principle, the space—time evolution of the

mode—conversion process provided the value of A and its spatial derivative are

known at the edge. The simplest response contain~d in (B—6) is that due to a

fixed amplitude at the boundary. Denoting this part of the solution as A11

yields

A
11

(x ,t) — ~~ e
5t [e~~~5)~C + e~~~~~~~J (B—7)

from which one obtains the asymptotic solutions Ct -
~~ °~
) corresponding to the

mode—converted waves of the form

exp{±j [JEczz /cxx J ]
~~

2 
~~

} . (B-8) 
—
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FIGURE CAPTIONS

FIG. 1 Cartessian coordinate system and corresponding slab geometry used

in the problem . 
-

FIG. 2 Qualitative sketch indicating the direction of power flow associated

with the evanescent radiation prior to mode-conversion.

FIG . 3 Spatial dependence of typical zero-order quantities investigated .

The continuous curve represents the density profile , the dashed curve

denotes the dielectric 
~~~~~~~~~ 

and the dotted curve corresponds to E l 2

prior to mode-conversion.

FIG. 4 Spatial dependence of the real (continuous curve) and imaginary

(dashed curve) parts of E., for different times during the process of

mode-conversion. Time interval displayed: a) ut = 1.0, b) ut = 5.0,

c) ot 10.0, d) ut = 20.0.

FIG. 5 Spatial penetration of RF energy into the plasma after mode-conversion

takes place. Continuous curve is the density, dashed curve is the

dielec tric The dotted curve is !E Z I2 at ut = 20.0 , and should

be compared with Fig. 3.

FIG. 6 Phasor plo t of E ,, at ut = 5.0. Parameter along curve is the spatial

posi tion into the plasma , and increases in the direc tion of the arrows .

Clockwise rotation shows mode-converted wave is a backward wave.

FIG. 7 Phasor plot of E
~ 

at ut = 5.0. Parameter along curve is the spatial

posi tion in to the plasma , and increases in the direction of the arrows .

Clockwise rotation shows mode-converted wave is a backward wave.
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FIG. 8 Space-time penetration of RF energy in the linear regime over the

time interval 0.5 < ut < 10.0. Overlapping of curves for different

times indicates approach to the steady-state .

FIG. 9 Typical nonlinear distortion of the density profile obtained for

large external power levels. The continuous curve is the profile

at ut = 10.0, and the dashed curve is the unperturbed profile.

FIG . 10 Nonlinear quenching of the mode-conversion process observed at large

power levels. Shown are phasor plots of E
~ 

for : a) l inear case , and

b) strong nonlinearity. Curves a) and b) are plotted on the same

scale and correspond to equal times in the evolution .

FIG . 11 Nonlinear quenching of the mode-conversion process observed at large

power levels. Shown are phasor plots of E
~ 

for: a) linear case , and

b) mild nonlinearity (compared to that used in Fig. 10). Curves

a) and b) are on the same scale and correspond to equal times in

the evolution.

FIG. 12 Time dependence of total electric field energy content in the plasma ,

U, for different values of the externally applied amplitude , E0, in

arbitrary units: linear case, E0 
= 1.0 , E0 = 2.0, E0 = 3 .0.

FIG. 13 Dependence of the rate of electric field energy penetration into the

plasma

~~~(J::dx
t
~

/E o 2)]

on the externally applied power level , in arbitrary units. c is the

speed of light. Heavy squares are numerical :~esults , and sol id

curv e is eyeball f it given 5y Eq. (58) .
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FIG. 14 Nonlinear space-time penetration of RF energy into the plasma

over the interval 5.0 < ut < 10.0. Dashed curved is the Zero-

order density profile; continuot.is curve next to dashed curve is

the nonlinearly modified profile. To be compared with Fig. 8

FIG. 15 Spectacular nonlinear pulses and density striations observed at

large power levels in shallow density profiles .

FIG. 16 Nonlinear propagation of multiple-peak pulse trains that give rise

to intermittent transport of RF energy to the interior of the

plasma. Behavior to be contrasted with linear result shown in

Fig. 8.
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